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“jaguar” is a combination of XT3 and XT4

• Each compute socket has a 2.6GHz dual-core AMD opteron
processor
− 11508 x 2 = 23016 cores

• Memory is 4GB/processor or 2GB/core
− 11508 x 4GB = 45TB

• jaguar’s aggregate peak performance is ~119TF
− 10.4GF per socket

• In addition to compute nodes, there are service nodes for I/O, login 
etc.

XT3 XT4 Total
No. of cabinets 56 68 124
No. of compute sockets 5212 6296 11508
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Cray XT3/4 Architecture

• XT3 is 3rd generation Cray MPP
• Service nodes run Linux
• Compute nodes run Catamount 

quintessential kernel (qk)
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Getting started on jaguar...

• Connecting
− ssh <your_username>@jaguar.ccs.ornl.gov

• File systems
− Home directory is /spin/home/<username>

• Accessible from all NCCS systems
• Regularly backed-up
• Quotas exist. Use lsquota to check usage

− Scratch space is /tmp/work/<username>
• Points to the lustre file system
• Not backed up. Periodically purged

− Files not accessed in more than a week are eligible for 
purging
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Current software environment

• PGI 6.1.6

• gcc 3.3

• Login nodes have kernel 2.6.5

• XT/MPT 1.5.31

• acml 3.6

Customizable through modules
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modules

• Several software available as modules

• module {list/avail/load/unload}

• module swap worth remembering 

• Watch for the occasional information message when 
executing module load

% module load netcdf
Usage:   ftntest.f90 ${NETCDF_F_LIB}    or   cc test.c 
${NETCDF_C_LIB}
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What is different under catamount?
• No threading (pthreads or OpenMP)
• No TCP/IP facilities (pipes, sockets or IP messages)
• No popen(), fork(), exec() or system() calls
• No dynamic (shared) libraries. static linking is the only option
• The /proc file-system is not available
• No IPC calls (shared memory shmem, limited signal handling).
• No mmap(), sbrk()
• No profil()
• No etime(), times(), clock()
• Limited ioctl()
• No terminal control
• No unix style deamons supported functions
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Compilers

• ftn, cc, and CC are very tidy wrappers for catamount compiling & 
linking.

• Use the wrappers essentially all the time.
− most of your builds will be cross-compiles for catamount

/opt/xt-pe/1.5.31/bin/snos64/ftn: INFO: catamount target is being used

-target=catamountwill suppress litany of warnings

• -r8 to do ubiquitous scientific computing promotion

• -g to get debugging symbols
− put -g FIRST (it implies -O0)
− -Ktrap=fp to trap floating point exceptions, and thereby actually do 

useful debugging
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Compiler options for optimization

• -fastto optimize
% pgf90 -fast -help

-fast   Common optimizations: -O2 -Munroll=c:1 -Mnoframe -Mlre

• Try some vectorization with -fastsse
− Only buys you 1 extra flop/clock for REAL*8, but fewer 

instructions are generated

-fastsse == -fast -Mvect=sse-Mscalarsse -Mcache_align-Mflushz

− -Mcache_align: if you don’t use -fastsse to build main, 
makes sure arrays are on cache line boundaries
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Compiler options (cont...)

• Let the compiler unroll small loops
− e.g. -Munroll=c:4 unrolls loops 4 times

• -tp k8-64 explicitly sets optimization for 64-bit 
Opteron

• -Mipa=fastenables interprocedural analysis (IPA)
− Equivalent to Mipa=align,arg,const,f90ptr, shape, 

globals,localarg,ptr
− It is usually a good thing for C++
− Make sure to put it on the link line too

• -byteswapio for big-endian data format
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Compiler optimization report

• -Minfo=allemits information, including whether SSE 
instructions were generated
− same as -Minfo=inline,ipa,loop,mp

Sample output from compiling with -fastsse -Minfo=all
step_icd2:
205, Generated 4 alternate loops for the inner loop

Generated vector sse code for inner loop
Generated 2 prefetchinstructions for this loop
Generated vector sse code for inner loop
Generated 2 prefetchinstructions for this loop
Generated vector sse code for inner loop
Generated 2 prefetchinstructions for this loop
Generated vector sse code for inner loop
Generated 2 prefetchinstructions for this loop
Generated vector sse code for inner loop
Generated 2 prefetchinstructions for this loop

225, Loop unrolled 4 times
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Running on jaguar

• Queue management and scheduling is done through 
torque and moab
− torque is based on PBS

• A sample job script
#!/bin/csh
#PBS -A XXXYYY
#PBS -N test
#PBS -j oe
#PBS -l walltime=1:00:00,size=1024
#PBS -W depend=afterany:<jobid>
#PBS -l feature=xt4

set_environment_variables_here
executable_part_of_batch_script

csh will be used to interpret the script
A project code is necessary

size is the number of ‘sockets’ requested
Introduce a job dependency (optional)
Choose to run on xt3 or xt4 (optional)
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Running (cont...)

• By default commands will be executed on the service 
nodes

• yod launches applications on compute nodes
yod -size <size> -SN/VN executable

− -SN executes on only one core per socket
− -VN executes on both cores of a socket (default)

#!/bin/csh                       
#PBS -A XXXYYY
#PBS -N test
#PBS -j oe
#PBS -l walltime=1:00:00,size=1024

...
yod -size 1024 -SN ./a.out
yod -size 2048 -VN ./a.out

csh will be used to interpret the script
A project code is necessary

size is the number of ‘sockets’ requested

Uses all sockets, 1 core per socket
Uses all sockets, both cores per socket
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yod and small_pages

• -small_pages option to yod

− Opteron TLB provides 512 entries for 4kB pages, or 8 
entries for 2MB pages.

− By default, Catamount uses 2MB pages
− This allows 16MB to be mapped in the TLB (vs 2MB for 

4kB pages)
− If your code jumps around to more than 8 places in 

memory (e.g. you have some sort of gather/scatter 
loop), you may want to try -small_pages
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Useful MPI variables

• You may need to (re)set a couple of MPI environment 
variables

• MPICH_UNEX_BUFFER_SIZE - size of buffers for 
unexpected receives 
− Default = 60M  
− >400M?

• MPICH_PTL_OTHER_EVENTS - sets the number of 
events in queue to receive “all other” types of 
messages  (i.e. a lot, e.g. MPI_ALL_TO_ALL)
− Default = 2048   
− 4096 works for some codes to go to 5000 procs
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More MPI variables

• MPICH_PTL_UNEX_EVENTS - number of unexpected 
point-to-point messages (MPI_GATHERV)
− Default = 20480    
− Experience shows may need to be set to 80000 or 

more

• MPICH_RANK_REORDER_METHOD - controls the 
assignment of MPI ranks
− Set to 1 for smp-style (0,1;2,3;4,5)
− Set to 2 for folded (0,3;1,4;2,5)
− Set to 3 for custom.  You must then create a file in your 

run directory named MPICH_RANK_ORDER. This file 
is a comma separated (ranges allowed) list of ranks
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Submitting and monitoring jobs

• Submit a job using qsub <batch_script>

• qstat -ashows the queue status

• qstat -u <username> shows the users’ jobs

• qaltercan change some job characteristics

• The Moab utility showq can be used to view a more 
detailed description of the queue
− Shows the state of the job. Active, idle, blocked etc.
− Shows the priority of different jobs in the queue

• checkjob and showstart are other useful Moab 
utilities
− Show why a job is blocked, expected start time etc.
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More monitoring tools

• Watch your job with xtshowmesh or xtshowcabs

• yod may die during start-up or in-between due to 
hardware failure
− Can your application restart using checkpoints?
− Have multiple yod in the batch script with sleep in 

between
− If one yod crashes, the next yod can start within the 

same batch job

• If you should need to kill a yod
− xtps -Y to find out the nid and pid
− xtkill -9 <nid>.<pid> deletes the yod without removing 

the job
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Queue policies
• Two queues : production and debug

− #PBS -q batch or #PBS -q debug in batch script

• ~10% of the machine is reserved for the debug queue 
from 10am-10pm, Mon-Fri.
− Only one debug job at a time
− Maximum wall-time of 1 hour

• Batch jobs have time limits depending on job size
< 128 : Max. 4 hours
129 - 2000 : Max 12 hours
> 2000 : Max 24 hours

• Only two jobs per user will be in ‘eligible’ state. Rest 
will be in ‘blocked’ state
− Jobs that are running are not counted in the ‘two jobs’.
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Interactive debugging

• Interactive jobs are useful for debugging
% qsub -I -V -qdebug -A<XXXYYY> -lWalltime=1:00:00,size=32

qsub: waiting for job 9493.jaguar10.ccs.ornl.gov to start

qsub: job 9493.jaguar10.ccs.ornl.gov ready

% cd to_the_right_path

% yod -np 64 -VN ./executable.x

• Totalview is available on jaguar
% totalview yod -np 64 -VN ./executable.x

• Debug queue is to be used for software development, 
testing and debugging only

• Do not use it for production work
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Accounting

• Hours charged = job_size x 2 x walltime
− Jobs are allocated an entire socket and not individual 

cores
− A job will be charged for both cores irrespective of 

whether one or both cores in a socket are used
− XT3 and XT4, both are charged same

• showusage is useful to track account usage 
% showusage 
Usage on jaguar:  

Project Totals          <userid>
Project      Allocation        Usage    Remaining          Usage
_________________________|___________________________|_____________
<YourProj>    2000000   |   123456.78   1876543.22  |     1560.80

% 
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Scientific Libraries

• ACML (AMD Core Math Library)
− BLAS, LAPACK, 1-D FFT
− Fast intrinsics and vector intrinsics
− LAPACK timing routines have been hacked
− Has been compiled with -fastsse, so use
-Mcache_align

• Cray LibSci
− ScaLAPACK, BLACS, SuperLU

• acml/3.6 and xt-libsci/1.5.31 are loaded as part of the 
default module set

• fftw/2.1.5 and fftw/3.1 are available
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I/O Libraries

• HDF5
− Parallel and serial versions available as modules 

(hdf5/1.6.4_ser& hdf5/1.6.4_par)
− Need to add link and include info to build

• ${HDF5_FLIB}and ${HDF5_CLIB}
• These also point to szip and libz

• netCDF
− netcdf/3.6.0 available as module

ftntest.f90 ${NETCDF_F_LIB} or 
cc test.c ${NETCDF_C_LIB}

− Any need for pnetCDF?

• Please let us know what other libraries you need
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lustre filesystem
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